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Abstract— This paper is an attempt to study the role of various object oriented software metrics with regard to software quality and 
implementing them on an open source Java based operating system to evaluate its design traits. Captured metrics have been mapped to 
higher level quality attributes characterized by the QMOOD quality model. Prior to mapping, metric values have been normalized to enable 
us to interpret the meaning of quantitative figures calculated to indicate quality factors. This one offers a concrete model resulting in 
computation of measures such as reusability, flexibility, understandability, functionality and alike using composite metrics. Also it is 
economical to implement this type of model and can be effectively used in observing many aspects of software product quality. This would 
enable the project managers to foresee the problem areas and refactor the code to eliminate anomalies and undesirable complexities 
which may crop up post-deployment. Besides early assessment, it should considerably facilitate in better project planning and efficient 
resource-allocation.  

Index Terms— Software quality, object-oriented software metrics, quality attributes, QMOOD model, JNode OS, metric collection tool, 
normalization. 

——————————      —————————— 

1 INTRODUCTION
oftware Quality evaluation entails set of processes that 
consume great deal of time and resources to maintain 

sufficient level of software quality. Besides, application of 
comprehensive testing suites consistently over all the 
components of a software is not practically feasible. Early in 
the development stages, project managers would like to 
identify segments of classes which are potentially more fault-
prone and are characterized by other complexities beyond an 
acceptable limit, that too with minimum efforts and time. 
Software metrics play essentially a vital role in quantifying 
certain properties of a software artifact to gain insight into its 
qualitative aspects. The IEEE Standard Glossary of Software 
Engineering Terms [1] defines a metric as “a quantitative 
measure of the degree to which a system, component, or 
process possesses a given attribute.” When processes are 
going off-track, these are the indicators that enable managers 
to take pro-active actions to bring them back under control. 
They can also ascertain the degree of success or failure of an 
end product by assessing their internal attributes. There exist 
several metrics to capture the quality of object-oriented (OO) 
design and processes, such as proposed by Chidamber and 
Kemerer [2] popularly known as CK metrics (WMC, RFC, DIT, 
LCOM, CBO, NOC), Lorenz and Kidd Metrics [3], Li and 
Henry Metrics [4], Tang et al. [5], Henderson-sellers [6], Goal 
Question Metrics [7], and some other lesser known also exist. 
In addition there exist many quality models, for instance, 
McCall’s (1977), Boehm (1978), Dromey (1995), ISO/IEC 9126, 
SQuaRE (1999), QMOOD (2002)  which define components for 
specifying and measuring quality and for assessing and 
aggregating the measurement results. To examine the actual 
implications of a quality evaluation approach, it needs to be 
practically tested on a specific software product with the aid 
of a compatible metric collection tool. 

Rest of the paper is organized as follows. Section 2 
discusses relevant research work in the subject. Section 3 gives 
a brief description of QMOOD quality model [8] followed. 
Section 4 identifies data set, tool and related metrics. Section 5 
presents metric calculation results in the form of descriptive 
statistics. Section 6 describes normalization of chosen metrics 
& deriving higher level quality attributes. Section 7 pinpoints 
the threats to validity of results. Concluding remarks are given 
in Section 8.  

2 RELATED WORK 
Researchers have done various empirical studies to evaluate 
the effect of OO metrics on software quality and introducing 
models that utilize them in estimating fault-proneness and 
predicting quality attributes. MOOD metrics model [9] 
describes basic structural mechanism of the object oriented 
paradigm as encapsulation, inheritance, polymorphism and 
message passing. Briand et al. [10] empirically explore the 
relationships between existing object oriented measures and 
observes that size of classes, frequency of method invocations 
and depth of inheritance also affect fault proneness. 
Subramanyam et al. [11] uses CK Metrics suite to find 
software defects using two programming languages C++ and 
Java and results vary according to the language chosen. 
Nagappan [12] in his large empirical study of five Microsoft 
software systems found that failure prone software entities are 
statistically correlated with code complexity measures. Jiang 
[13] demonstrated that code-level metrics perform better than 
design level metrics and combination of them performs the 
best. Y Ma [14] suggests a hybrid set of complexity metrics for 
large scale object oriented systems. Authors [15] calculate and 
optimizes thresholds for set of software metrics. Authors in 
their paper [16] conducted an experiment to evaluate the 
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practical use of the proposed thresholds for a set of OO 
metrics. Authors in their comprehensive literature review [17], 
reported OO and process metrics to be more successful in 
finding faults compared to traditional size and complexity 
metrics.  

3 THE QUALITY MODEL ADOPTED 
A Quality Model is defined as “The set of characteristics and 
the relationships between them which provides the basis for 
specifying requirements and evaluating quality” [ISO 15498-
1]. Models usually decompose quality into a hierarchy of 
criteria and attributes. These hierarchical models lead to 
metrics at their lowest level [18]. Metrics are directly 
measurable attributes of software and they are used to express 
certain aspects of the product that affect quality. Several 
approaches to model the quality of a software product have 
been recommended in the literature. In this paper we have 
implemented a model that focuses on the quality of the design 
by using source code metrics. Given by Bansiya et. al. [8], 
QMOOD is a hierarchical model which implements a way to 
map source code metrics to higher abstraction levels.  Table 1 
shows the computation formulas for quality attributes 
according to QMOOD. 
 

TABLE 1: COMPUTATION FORMULAS FOR QUALITY ATTRIBUTE 
FOLLOWED BY QMOOD [8]  

Quality 
Attribute 

Index Computation 

Reusability -0.25 * Coupling + 0.25 * Cohesion + 0.5 * 
Messaging + 0.5 * DesignSize 

Flexibility 0.25 * Encapsulation - 0.25 * Coupling + 0.5 * 
Composition + 0.5 *Polymorphism 

Understandability -0.33 * Abstraction + 0.33 * Encapsulation - 
0.33 * Coupling + 0.33 * Cohesion -0.33 * 
Polymorphism -0.33 * Complexity -0.33 * 
DesignSize 

Functionality 0.12 * Cohesion + 0.22 * Polymorphism + 0.22 
* Messaging + 0.22 * DesignSize + 0.22 * 
Hierarchies 

Extendibility 0.5 * Abstraction - 0.5 * Coupling + 0.5 * 
Inheritance + 0.5 * Polymorphism 

Effectiveness 0.2 * Abstraction + 0.2 * Encapsulation + 0.2 * 
Composition + 0.2 * Inheritance + 0.2 * 
Polymorphism 

 
Primarily QMOOD model was designed for evaluation 

with C++/Visual C++ validation suite though it can be 
applied on any object oriented language based software.    

4 DATA SET, TOOL AND METRICS SELECTION 
In order to verify the practical applicability of the adopted 
model, a java based operating system “JNode” (Version 0.2.7) 
[19] has been chosen as a case study. It is an open source 
multi-version software project to create a Java platform 
operating system. JNode source tree is divided into 10 major 
modules which further contain many more subdirectories and 
files. It spans over more than 15000 classes and beyond 1.9 
million lines of code. Since it would have been very 
computation-intensive to assess whole OS in one go, hence 
JNode’s  key component called ‘Core’ is opted for evaluation. 

JNode-Core contains virtual machine code, the classpath java 
library sources and the core of the JNode OS, including the 
plugin manager, driver framework, resource manager and 
security manager. This is by far the largest and most complex 
module; covers 83% of total OS size and therefore the most 
convincing representative of whole software.  

To measure the source code, Eclipse IDE’s plugin ‘Metrics 
1.3.6’ [20] has been implemented on JNode-Core module. This 
tool analyzes the source code, generates about 20 metrics and 
allows exporting the results in .xml file for further study. The 
metrics produced are not exactly the same as defined in 
QMOOD metric-suite, yet bear many resemblances. For some, 
replacement is straight forward; while for rest, other related 
metrics were used to derive them. According to Bansiya et. al. 
[8], at the lowest level, metrics used to assess design properties 
may be changed or a different set of design properties may be 
used to assess quality attributes. Therefore our step of 
replacing metrics is justified. Table 2 records QMOOD design 
metrics and our corresponding replacement metrics. 
 

TABLE 2: QMOOD DESIGN METRICS & OUR SUBSTITUTE METRICS 
Design 
Property 
[QMOOD] 

Design Metric 
[QMOOD] 

Equivalent 
metric 
Computed/ 
derived  
(in this paper)  

Construct 

Coupling Direct Class 
Coupling 
(DCC) 

Efferent 
Coupling (CE) 

Package 

Cohesion Cohesion 
Among 
Methods of 
Classes 
(CAM) 

*Lack of 
Cohesion of 
Methods 
(LCOM) 

Class 

Messaging Class 
Interface Size 
(CIS) 

Number of 
Methods 
(NOM) 

Class 

Design Size Design Size in 
Classes (DSC) 

Number of 
Classes (NOC) 

Package 

Encapsulation Data Access 
Metric (DAM) 

1 - 

Composition Measure of 
Aggregation 
(MOA) 

Number of 
Attributes 
(NOF) 

Class 

Polymorphism Number of 
Polymorphic 
Methods 
(NOP) 

Number of 
Overridden 
Methods 
(NORM) 

Class 

Abstraction Average 
Number of 
Ancestors 
(ANA) 

Abstractness 
(RMA) 

Package 

Complexity Number of 
Methods 
(NOM) 

Weighted 
methods per 
Class (WMC) 

Class 

Hierarchies Number of 
Hierarchies 
(NOH) 

Depth of 
Inheritance 
Tree (DIT) 

Class 

Inheritance Measure of 
Functional 
Abstraction 
(MFA) 

* [ ∑ NORM / 
NOM * 100] 

Class 

 * Equivalent Design-metric ‘derived’ from related metric  

Following is a brief explanation of some of the metrics 
replaced for the ones dictated by chosen model. 
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a) Cohesion: It is the degree to which the methods within a 
class are related to one another. High cohesion indicates good 
class subdivision [21]. CAM is conversely related to LCOM 
and can be easily derived from latter by taking its reciprocal 
value. 
b) Messaging: Originally CIS includes number of public 
methods in a class. But we are constrained to consider total 
number of methods instead, due to unavailability of measure 
suggested primarily.  
c) Encapsulation: DAM is the ratio of number of private 
(protected) attributes to the total number of attributes declared 
in a class. The tool selected does not provide support for this 
metric, neither does it provide enough information to derive 
this metric. Therefore, value “1” has been fixed as a neutral 
measure in this study.  
d) Composition: MOA is the count of number of data 
declarations whose types are user defined classes. Since our 
tool does not support this metric as well, therefore this has 
been compensated by number of attributes (NOF) assuming 
that the attributes inclusive of primitive data types along with 
user-defined can also indicate the composition design 
property.  
e) Complexity: According to NASA-SATC [21] review, WMC 
is computed as sum of complexities (cyclomatic complexity) of 
methods in a class or count of methods of a class. Chidamber 
and Kemerer [2] suggests number-of-methods as measure of 
class complexity in WMC metric. When all methods are 
weighted equally, the WMC metric has the same measure as 
number of methods (NOM) in a class. However, sum-of-
complexities more accurately depicts this metric and our tool 
also makes it available, so we decided to use this metric. 
f) Inheritance: Since this metric was not readily available, we 
could derive it through other two available metrics – as ratio 
of number of overridden methods (NORM) to total number of 
methods (NOM). 

5 COMPUTING METRICS 
After these comprehensive pre-preparations, we are all set to 
compute metrics by applying software metric tool. Since it is 
an eclipse plug-in, it first required us to import JNode source 
in eclipse IDE and build (compile) it successfully. Moreover, 
for a considerable size software- build process, computing 
metrics through plug-in and finally exporting it to .xml file is 
quite a CPU & memory-intensive task and it took hours of 
processing before delivering the results. Table 3 shows the 
descriptive statistics for metrics computed through eclipse 
plug-in, along with the Z-score which is calculated separately. 
 

TABLE 3 : DESCRIPTIVE STATISTICS FOR METRICS COMPUTED 
Metric MAX AVG STD-

DEV 
SUM Z-value 

(normal
ized) 

CE 260 7.138 14.864 - 17.02 
*Cohesion 
(1/LCOM) 1.778 0.197 0.314 

- 0.20 

NOM 1189 8.032 17.61 126577 67.06 
NOC 389 14.211 29.736 15760 12.61 
* Encap- - - - - # 

sulation =1 
NOF 193 2.192 4.734 34545 40.34 
NORM 193 0.883 3.756 13914 51.23 
RMA 0.26 0.32 1 - 2.31 
WMC 1785 22.421 51.662 353362 34.12 
DIT 9 2.172 1.296 - 5.27 
*Inheri- 
tance=10.99 

- - - - # 

- indicates statistics not-available or not-applicable 
* represents fixed value or derived as mentioned in Section 4  
# represents already-normalized metric value 

As mentioned in Table 2, some of the measures computed are 
class-wise and some are package-wise. Since these measures 
further have to make up as input parameters to attain quality 
attributes, we need to choose one aggregate value from each 
metric’s domain of quantities. For this purpose, maximum 
value obtained for each metric has been selected. It makes 
sense because upper-limit indicates up to what level a 
measure is spread out for the software. One may argue that, in 
many cases it may be an outlier and final outcomes should not 
be based on a few extreme values. The justification lies in the 
next step of normalization (process of computing standard 
scores); where standard deviation and mean for each set of 
measures would be used as parameters to get normalized 
value. Standardized scores retain the order of the values and 
more important, the shape, center, and spread of the 
distribution. 

6 NORMALIZING & DERIVING HIGHER LEVEL QUALITY 
ATTRIBUTES 

One may observe in Table 3 that metric values are of different 
ranges and combining them (as raw) further to attain higher 
level quality attributes would lead us to the problem of 
interpretation. In that case, we have two choices – either we 
compare them with some other releases of the same software 
or we normalize them into a smaller, more interpretable range. 
Since first option is beyond the scope of this paper, so we go 
for the second one. For this we compute the Z-value [22] 
which is commonly used in statistics to convert arbitrary data 
into z-scores, typically with a mean of 0 and variance of 1.  
They are also called ‘standard-scores’ and are calculated for a 
series of data by subtracting the mean from the observed-
measurement (‘max’ value in our case) and dividing by the 
standard deviation. Using standard scores or percentiles, it is 
also possible to compare scores from different distributions 
where measurement is based on a different scale. 

Last column of Table 3 records normalized metric values 
which are further used to obtain quality attributes (in Table 1). 
Normalization should be performed before adding the metrics 
values at the bottom level in the model to calculate items at 
the higher level. And then the values of the higher level items 
in the model can be derived from the weighted sum of the 
values of those items associated with it [23]. 

Accordingly, after computation, Fig. 1 shows the plot of 
Reusability, Flexibility, Functionality, Extendibility and 
Effectiveness for JNode-Core.  
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Fig. 1: Quality Attributes Graph  

Understandability is the only quality attribute that is 
characterized with a negative value and has not been plotted 
in graph. It agrees with the expectation that each release 
portray a developing framework that takes on additional 
functionality in each new revision and is therefore expected to 
be harder to learn and understand [8]. However, all other 
attributes are positively associated as one can anticipate.  

Additionally, there is always a trade-off among choosing 
the thresholds for various quality attributes. A desirable 
increase in one may lead to compromising decline in other. 
Nevertheless it should be balanced according to client's 
priorities or organization’s strategic goals. 

7 THREATS TO VALIDITY 
A number of threats to validity should be addressed in future: 
i) Findings may be biased towards the single representative 
data set which was opted for case study. In next phase, we 
should pick multiple releases and their comparison analysis 
will shed more light on validity of results.  
ii) Selection of replacement metrics for the original ones might 
have put across the things differently. 
iii) Choice of metric collection tool and its measurement 
precision may be a source of bias. 
iv) Additional metric sets, if taken into consideration, might 
have influenced the quality of end product other way. 
v) The Quality model chosen may itself be another source of 
bias.   
Nonetheless there is less likelihood that selection of different 
data set, metrics or tools would altogether change the 
conclusions drawn or would end up largely in conflict with 
the estimation accuracy. However, we encourage readers to 
test more data sets with additional metrics and tools. 

8 CONCLUDING REMARKS 
In this paper, we have conducted source code analysis for 
‘core’ component of one version of JNode OS, an open source 
Java based platform and presented the preliminary results of 
this study. For this purpose we utilized several object oriented 
metrics, calculated their values through a tool ‘Metrics 1.3.6’ 
(an eclipse plugin), normalized the metric scores, and further 

used them as input parameters to compute higher level 
quality attributes dictated by QMOOD quality model. Results 
indicate that a concrete quality model using an OO metrics 
suite is useful and cost-effective medium for evaluation of a 
software artifact and can reveal the potential problem spots 
which need to be taken care off before deployment. Almost all 
metrics are employed over and again to obtain multiple 
quality attributes, though with different weights every time. 
Some are positively correlated to higher level entities while a 
few behave conversely. It would be beneficial for project 
managers to identify weighted contribution of these metrics in 
attaining qualitative aspects and allocate resources for 
improvement areas accordingly. There is no denying that code 
metrics alone are not sufficient to make concluding statements 
for a product’s ultimate quality, yet their contribution is 
significant in an organization’s comprehensive quality 
assessment program. 
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